Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts as they are presented in the Algebra Class Software.

<u>Concept</u>	Cheat Sheet
Adding Integers	1
Subtracting Integers	2
Multiplying Integers	3
Dividing Integers	4
Absolute Value	5
Combining Like Terms	6
Distributive Property I	7
Adding Expressions	8
Subtracting Expressions	9
Writing Expressions	10
Evaluating Expressions	11
Solving Equations	12
Solving Inequalities	13
Writing Equations	14
Writing Inequalities	15
Solving Literal Equations	16
Points on the Coordinate Plane	17
Graphing – Using Slope and Intercept	18
Graphing – Using Function Tables	19
Find the Slope of a Line from Two Points	20
Equation of a Line	21
Graphing Inequalities	22

<u>Concept</u>	Cheat Sheet
Forms of Linear Equations	23
Solving Equations II	24
Multiplying Monomials	25
Dividing Monomials	26
Raising Monomials to a Power	27
Negative Powers of Monomials	28
Dividing by a Monomial	29
Greatest Common Factor (GCF)	30
Combining Like Terms II	31
Adding Polynomials	32
Subtracting Polynomials	33
Missing Factors	34
Degree of a Polynomial	35
Multiplying Polynomials by -1	36
Multiplying a Polynomial by a Variable	37
Multiplying a Polynomial by an Integer	38
Multiplying a Polynomial by a Monomial	39
Multiplying Two Binomials	40

Adding Integers

- Adding means combining
 - 1. If the signs are the same, then add and use the same sign.
 - 2. If the signs are different, then subtract and use the sign of the larger number.

$$8 + 4 = 12$$
 $-8 + -4 = -12$
 $-8 + 4 = -4$
 $8 + -4 = 4$

Adding Integers – Examples

Subtracting Integers

Subtracting is the opposite of adding.

Change the sign of the second term and add.

$$8 - (+4) = 8 - 4 = 4$$

$$-8 - (+4) = -8 - 4 = -12$$

$$8 - (-4) = 8 + 4 = 12$$

$$-8 - (-4) = -8 + 4 = -4$$

Subtracting Integers – Examples

Multiplying Integers

Multiply integers as you would whole numbers, then apply the sign rules to the answer.

- 1. If the signs are the same, the product is positive.
- 2. If the signs are different, the product is negative.

$$(8) (4) = 32$$

 $(-8) (-4) = 32$

$$(-8) (4) = -32$$

 $(8) (-4) = -32$

Multiplying Integers – Examples

Dividing Integers

Divide integers as you would whole numbers, then apply the sign rules to the answer.

- 1. If the signs are the same, the quotient is positive.
- 2. If the signs are different, the quotient is negative.

$$32 \div 8 = 4$$

 $-32 \div -8 = 4$

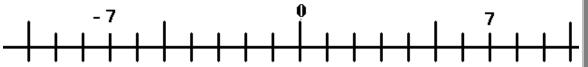
$$32 \div -8 = -4$$

 $-32 \div 8 = -4$

Dividing Integers – Examples

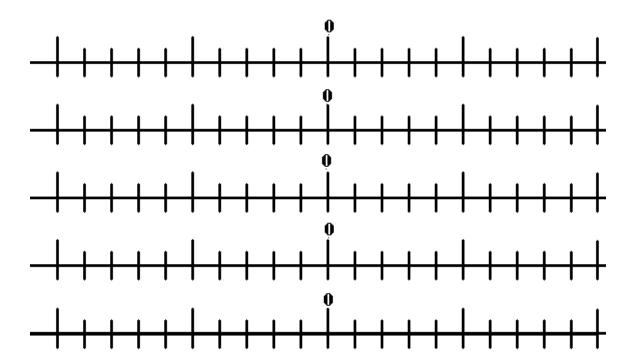
Absolute Value

The absolute value of a number is the distance a number is from '0' on the number line.



The absolute values of '7' and '-7' are 7 since both numbers have a distance of 7 units from '0.'

Absolute Value – Examples



Combining Like Terms

To combine terms, the variables must be identical.

- 1. Put the terms in alphabetical order.
- 2. Combine each set of like terms.
- 3. Put the answers together.

Combining Like Terms – Examples

$$3a + 4b + 2c + 5a - 6c - 2b$$

1. Put the terms in alphabetical order:

$$3a + 5a + 4b - 2b + 2c - 6c$$

- 2. Combine each set of like terms:
 - 3a + 5a = 8a
 - 4b 2b = 2b
 - 2c 6c = -4c
- 3. Put the answer together:

$$8a + 2b - 4c$$

Combining Like Terms

To combine terms, the variables must be identical.

- 1. Put the terms in alphabetical order.
- 2. Combine each set of like terms.
- 3. Put the answers together.

Combining Like Terms – Examples

Distributive Property I

Multiply each term inside the parenthesis by the term on the outside of the parenthesis.

•
$$c(a - b) = ca - cb$$

Distributive Property – Examples

$$3b (a + 4) =$$

$$3b (a) + 3b (4) =$$

$$3ab + 12b$$

Distributive Property I

Multiply each term inside the parenthesis by the term on the outside of the parenthesis.

- $c(a + \overline{b}) = \overline{ca + cb}$
- c(a b) = ca cb

Distributive Property – Examples

Adding Expressions

- 1. Set the problem up vertically.
- 2. Combine the terms.

Adding Expressions – Examples

Write the problem vertically:	
8c + 2d - 4g	
<u>-7c + 4d - 8g</u>	
1. Combine the c's:	8c - 7c = c
2. Combine the d's:	2d + 4d = 6d
3. Combine the g's:	-4g - 8g = -12g
4. The answer is:	c + 6d - 12g

Adding Expressions

- 1. Set the problem up vertically.
- 2. Combine the terms.

Adding Expressions – Examples

Subtracting Expressions

- 3. Set the problem up vertically.
- 4. Change the signs of each term on the bottom line.
- 5. Combine the terms.

Subtracting Expressions – Examples

Change the bottom signs:	Combine the terms:
8c + 2d - 4g	8c + 2d - 4g
<u>- 7c - 4d + 8g</u>	<u>-7c + 4d - 8g</u>
1. Combine the c's:	8c - 7c = c
2. Combine the d's:	2d + 4d = 6d
3. Combine the g's:	-4g - 8g = -12g
4. The answer is:	c + 6d - 12g

Subtracting Expressions

- 1. Set the problem up vertically.
- 2. Change the signs of each term on the bottom line.
- 3. Combine the terms.

Subtracting Expressions – Examples

Writing Expressions

Look for 'clue' words:

- 1. For the clue words, 'the product of place the constant before the variable. Do not use a sign.
- 2. The clue words '<u>more than</u>' and '<u>less than</u>' indicate inverted order.
- 3. If there are no clue words, write the expression in the order that the words appear.

Writing Expressions – Examples

1. The product of 4 and x The product of y and 5	4x 5y
2. <i>x</i> more than three thirteen less than <i>y</i>	3 + x $y - 13$
3. the sum of ten and x the difference between y and 4	10 + x y - 4

Writing Expressions

Look for 'clue' words:

- 1. For the clue words, 'the product of place the constant before the variable. Do not use a sign.
- 2. The clue words '<u>more than</u>' and '<u>less than</u>' indicate inverted order.
- 3. If there are no clue words, write the expression in the order that the words appear.

Writing Expressions – Examples

Evaluating Expressions

- Step 1. Replace the variable with parentheses.
- Step 2. Place the value of the variable inside the parentheses.
- Step 3. Calculate the answer.

Evaluating Expressions – Examples

Evaluate 10x + 7, when x = 5.

Step 2.
$$10(5) + 7$$

Step 3.
$$50 + 7 = 57$$

Evaluating Expressions

- Step 1. Replace the variable with parentheses.
- Step 2. Place the value of the variable inside the parentheses.
- Step 3. Calculate the answer.

Evaluating Expressions – Examples

Solving Equations

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- **Step 2.** Divide by the coefficient of the variable to determine its value.

Solving Equations – Examples

$$2d + 3 = -7$$

$$2d = -10$$

2.
$$d = -5$$

Solving Equations

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- **Step 2.** Divide by the coefficient of the variable to determine its value.

Solving Equations – Examples

Solving Inequalities

- **Step 3.** Get all the variables on the left and all the numbers on the right of the sign by adding opposites.
- **Step 4.** Divide by the positive value of the variable's coefficient.
- **Step 5.** If the variable is negative, divide by –1 and reverse the sign.

Solving Inequalities – Examples

$$-2d + 3 < -7$$

1.
$$-3 = -3$$

 $-2d < -10$

2.
$$-d < -5$$

3.
$$d > 5$$

Solving Inequalities

- **Step 1.** Get all the variables on the left and all the numbers on the right of the sign by adding opposites.
- **Step 2.** Divide by the positive value of the variable's coefficient.
- **Step 3.** If the variable is negative, divide by -1 and reverse the sign.

Solving Inequalities – Examples

Writing Equations

Look for 'clue' words:

- 1. For the clue words, 'the product of place the constant before the variable. Do not use a sign.
- 2. The clue words '<u>more than</u>' and '<u>less than</u>' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The equal sign is used in place of the word 'is.'

Writing Equations – Examples

1. The product of 4 and x is 12. The product of y and 5 is 10.	4x = 12 $5y = 10$
2. <i>x</i> more than three is 12. Thirteen less than <i>y</i> is – 3.	3 + x = 12 y - 13 = 3
3. The sum of ten and x is 12. The difference between y and 4 is – 2.	10 + x = 12 y - 4 = -2

Writing Equations

Look for 'clue' words:

- 1. For the clue words, 'the product of place the constant before the variable. Do not use a sign.
- 2. The clue words '*more than*' and '*less than*' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The equal sign is used in place of the word 'is.'

Writing Equations – Examples

Writing Inequalities

Look for 'clue' words:

- 1. For the clue words, 'the product of place the constant before the variable. Do not use a sign.
- 2. The clue words '<u>more than</u>' and '<u>less than</u>' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The < is used in place of '*is less than*.'
- 5. The > is used in place of 'is greater than.'

Writing Inequalities – Examples

1. The product of 4 and x is greater than 12.	4x > 12
2. x more than three is less than 12.	3 + x < 12
3. The difference between <i>y</i> and 4 is greater than – 2.	y - 4 > -2

Writing Inequalities

Look for 'clue' words:

- 1. For the clue words, 'the product of place the constant before the variable. Do not use a sign.
- 2. The clue words '<u>more than</u>' and '<u>less than</u>' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The < is used in place of '*is less than*.'
- 5. The > is used in place of '*is greater than*.'

Writing Inequalities – Examples

Solving Literal Equations

- **Step 1.** Get the desired variable on the left and all the others on the right of the equal sign by adding opposites.
- **Step 2.** Divide both sides by the positive value of any other variable on the left.

Solving Literal Equations – Example

Solve for l (length)
$$A = lw$$

$$lw = A$$
Divide by w
$$l = \frac{\underline{A}}{w}$$

Solving Literal Equations

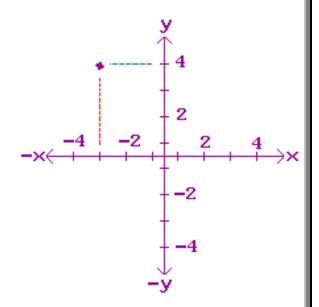
- **Step 1.** Get the desired variable on the left and all the others on the right of the equal sign by adding opposites.
- **Step 2.** Divide both sides by the positive value of any other variable on the left.

Solving Literal Equations – Example

Points on the Coordinate Plane

Locating Points:

- **Step 1.** Find the location on the x-axis. It is -3.
- **Step 2.** Find the location on the y-axis. It is 4.
- **Step 3.** Write the location in this form (x, y). The point is (-3, 4).



Plotting points:

Plot the point (5, -3) on the coordinate plane.

- **Step 1.** Begin at point (0, 0). Move 5 to the right (on the x-axis) since 5 is positive.
- **Step 2.** Move 3 down since –3 is negative.
- **Step 3.** Plot the point.

Notes - Points on the Coordinate Plane

- Use graph paper.
- ♦ Begin by marking the x-axis and y-axis as shown in the diagram above.

Graphing - Using Slope and Intercept

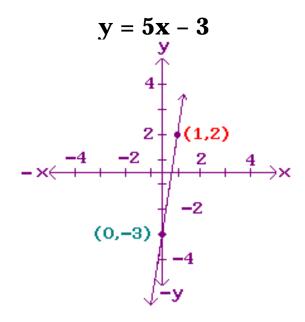
- The y-intercept is the constant in the equation. It is the value of y when x = 0.
- ♦ A line with a positive slope goes up and to the right.
- ♦ A line with a negative slope goes down and to the right.

To graph the equation: y = 5x - 3

- **Step 1.** The y-intercept is -3. Plot the point (0, -3).
- **Step 2.** The slope is 5. Move 1 to the right and 5 up from the first point. Plot the second point at (1, 2).

Step 3. Draw the line connecting the two points.

Graphing - Using the Slope and y-intercept



Graphing – Using Slope and Intercept

- The y-intercept is the constant in the equation. It is the value of y when x = 0.
- ♦ A line with a positive slope goes up and to the right.
- ♦ A line with a negative slope goes down and to the right.

To graph the equation: y = 5x - 3

- **Step 1.** The y-intercept is -3. Plot the point (0, -3).
- **Step 2.** The slope is 5. Move 1 to the right and 5 up from the first point. Plot the second point at (1, 2).
- **Step 3.** Draw the line connecting the two points.

Graphing - Using the Slope and y-intercept

Graphing - Using Function Tables

- **Step 1.** Substitute '0' for x, and calculate the value of y. Enter both on the first line of the function table.
- **Step 2.** Substitute '1' for x, then calculate the value of y. Enter both numbers on the second line of the function table.
- **Step 3.** Plot the two points, and draw a line between them.

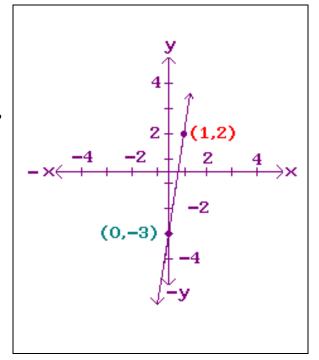
Graphing - Using Function Tables

$$y = 5x - 3$$

Step 1. Substitute '0' for x; y = -3. Enter x and y on the first line.

X	y
0	-3
1	2

- **Step 2.** Substitute '1' for x; y = 2. Enter these numbers on the second.
- **Step 3.** Plot the two points, (0, -3) and (1, 2) then draw a line between them.



Graphing – Using Function Tables

- **Step 1.** Substitute '0' for x, and calculate the value of y. Enter both on the first line of the function table.
- **Step 2.** Substitute '1' for x, then calculate the value of y. Enter both numbers on the second line of the function table.
- **Step 3.** Plot the two points, and draw a line between them.

Graphing - Using Function Tables

Find the Slope of a Line from Two Points

- **Step 1.** Make a function table, entering the x and y values of the two points.
- **Step 2.** Subtract: $y_1 y_2 = Rise$
- **Step 3.** Subtract: $x_1 x_2 = Run$

Step 4. Slope =
$$\frac{\text{Rise}}{\text{Run}} = \frac{y_1 - y_2}{x_1 - x_2}$$

Slope of a Line from Two Points

Find the slope of the line which includes points (-2, -2) and (1, 6).

- **Step 1.** Enter the x and y values for the two points.
- **Step 2.** The rise is (-2) (5) or -7.
- **Step 3.** The run is (-2) (1) or -1
- **Step 4.** The slope is 4.

- 2 Run	- 8 Rise
_	_
1	6
- 2	- 2
X	y

$$\frac{\text{Rise}}{\text{Run}} = \frac{-8}{-2}$$

Find the Slope of a Line from Two Points

Step 1. Make a function table, entering the x and y values of the two points.

Step 2. Subtract: $y_1 - y_2 = Rise$

Step 3. Subtract: $x_1 - x_2 = Run$

Step 4. Slope =
$$\frac{\text{Rise}}{\text{Run}} = \frac{y_1 - y_2}{x_1 - x_2}$$

Slope of a Line from Two Points

Equation of a Line

To find the equation of a line shown on a graph.

- **Step 1.** Determine the y-intercept. Find the point where x = 0. Substitute this value in the equation in place of 'b.'
- **Step 2.** Find the value of y when x = 1.
- **Step 3.** Subtract the value found in Step 1 from the value found in Step 2. This is the slope. Substitute this value in the equation in place of 'm.'

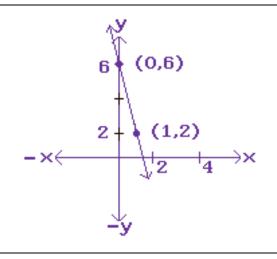
Equation of a Line - Example

6.
$$y = mx + 6$$
.

Step 2. When
$$x = 1$$
, $y = 2$.

The equation of the line is:

$$y = -4x + y$$



Equation of a Line

To find the equation of a line shown on a graph.

- **Step 1.** Determine the y-intercept. Find the point where x = 0. Substitute this value in the equation in place of 'b.'
- **Step 2.** Find the value of y when x = 1.
- **Step 3.** Subtract the value found in Step 1 from the value found in Step 2. This is the slope. Substitute this value in the equation in place of 'm.'

Equation of a Line - Example

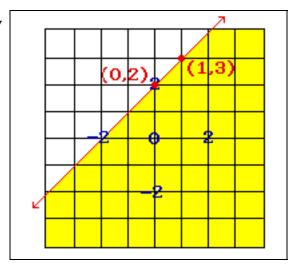
Graphing Inequalities

- **Step 1.** Plot the y-intercept.
- **Step 2.** Use the slope as the rise, and 1 as the run. Count the rise and run to find another point.
- **Step 3.** Determine what kind of a line will connect the points. (Use a dotted line for < or >; use a solid line for \le or \ge .)
- **Step 4.** Shade above the line for greater than (>), and below the line for less than (<).

Example – Graphing Inequalities

$$y \le x + 2$$

- **Step 1.** Substitute '0' for x; y = 2. Enter x and on the first line.
- **Step 2.** Substitute '1' for x; y = 3. Enter these numbers on the second.
- **Step 3.** Plot the two points, (0, 2) and (1, 3) then draw a solid line between them.



Step 4. Shade below the line because the sign is ≤.

Graphing Inequalities

- **Step 1.** Plot the y-intercept.
- **Step 2.** Use the slope as the rise, and 1 as the run. Count the rise and run to find another point.
- **Step 3.** Determine what kind of a line will connect the points. (Use a dotted line for < or >; use a solid line for \le or \ge .)
- **Step 4.** Shade above the line for greater than (>), and below the line for less than (<).

Example – Graphing Inequalities

Forms of Linear Equations – Examples

Change the slope-intercept equation to standard form.

$$y = \frac{2}{3}x - 3$$
 slope-intercept form
 $5y = 2x - 15$ Multiply each side by 5.
 $-2x + 5y = -15$ Subtract 2x from each side.

Change the standard form equation to slopeintercept form.

$$3x + 2y = 6$$
 Standard form equation
 $2y = -3x + 6$ Subtract $3x$ from each side.
 $y = \frac{-3}{2}x + 3$ Slope-intercept form

Algebra Cheat Sheet 23	rms of Linear Equations
Slope–intercept form	y = mx + b
Standard form	Ax + by = C

 $Forms\ of\ Linear\ Equations-Examples$

Solving Equations II

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- Step 2. Combine like terms.
- **Step 3.** Divide by the coefficient of the variable to determine its value.

Solving Equations II – Example

$$4x + 4 = 2x - 6$$

1.
$$4x - 2x = -6 - 4$$

2.
$$2x = -10$$

3.
$$x = -5$$

Solving Equations II

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- Step 2. Combine like terms
- **Step 3.** Divide by the coefficient of the variable to determine its value.

Solving Equations II – Examples

Multiplying Monomials

♦ To multiply monomials, add the exponents of the same variables.

Example - Multiplying Monomials

$$(a^3b^5c^8)(a^2b^7c^1)$$

Step 1. Multiply the a's	$(a^3)(a^2) = a^5$
Step 2. Multiply the b's	$(b^5)(b^7) = b^{12}$
Step 3. Multiply the c's	$(c^8)(c^1) = c^9$

Step 4. Put them together:

$$(a^3b^5c^8)(a^2b^7c^1) = a^5b^{12}c^9$$

Multiplying Monomials

♦ To multiply monomials, add the exponents of the same variables.

Examples - Multiplying Monomials

Dividing Monomials

♦ To divide monomials, subtract the exponents of the same variables.

Example – Dividing Monomials

$$(a^4 b^7 c^8)$$

 $(a^3 b^2 c^6)$

Step 1. Divide the a's	$\frac{\mathbf{a}^4}{\mathbf{a}^3} = \mathbf{a}^{4-3} = \mathbf{a}$
Step 2. Divide the b's	$\frac{b^7}{b^2} = b^{7-2} = b^5$
Step 3. Divide the c's	$\frac{c^{8}}{c^{6}} = c^{8-6} = c^{2}$

Step 4. Put them together:

$$\frac{(a^4 b^7 c^8)}{(a^3 b^2 c^6)} = a b^5 c^2$$

Dividing Monomials

♦ To divide monomials, subtract the exponents of the same variables.

Examples – Dividing Monomials

Raising Monomials to a Power

♦ To raise monomials to a power, multiply the exponent of each variable by the power.

Example - Raising Monomials to a Power

$$(ab^4 c^2)^2$$

Step 1. Square the a's	$(a)(a) = a^2$
Step 2. Square the b's	$(b^4)(b^4) = b^8$
Step 3. Square the c's	$(e^2)(e^2) = e^4$

Step 4. Put them together:

$$(a b^4 c^2)^2 = a^2 b^8 c^4$$

Raising Monomials to a Power

◆ To raise monomials to a power, multiply the exponent of each variable by the power.

Examples - Raising Monomials to a Power

Negative Powers of Monomials

♦ To multiply, divide or raise monomials to negative powers, use the rules for integers.

Example - Raising Monomials to a Power

$$(m^5 n^6 p^3) (m^{-2} n^{-1} p^3)$$

Step 1. Multiply the m's	$(m^5)(m^{-2}) = m^3$
Step 2. Multiply the n's	$(n^6) (n^{-1}) = n^5$
Step 3. Multiply the p's	$(p^3)(p^3)=p^6$

Step 4. Put them together:

$$(m^5 n^6 p^3) (m^{-2} n^{-1} p^3) = m^3 n^5 p^6$$

Negative Powers of Monomials

♦ To multiply, divide or raise monomials to negative powers, use the rules for integers.

Examples - Raising Monomials to a Power

Dividing by a Monomial

To divide by a monomial, separate the given expression into the sum of two fractions and divide.

Dividing by a Monomial - Example

$$\frac{12x^2 - 8x}{4x}$$

$$\frac{12x^2}{4x} + \frac{-8x}{4x} = -3x - 2$$

Dividing by a Monomial

To divide by a monomial, separate the given expression into the sum of two fractions and divide.

Dividing by a Monomial – Example

Greatest Common Factor

The greatest common factor (GCF) is the greatest number that is a factor of two or more given numbers.

In algebra, the GCF consists of the GCF of the coefficients multiplied by the GCF of the variables.

Greatest Common Factor – Example

$$-6x^2y + 3xy^2$$

- The GCF of the coefficients, 6 and 3, is 3.
- The GCF of the variables, x^2y and xy^2 is xy
- The product is *3xy*; this is the **GCF**.

Greatest Common Factor

The greatest common factor (GCF) is the greatest number that is a factor of two or more given numbers.

In algebra, the GCF consists of the GCF of the coefficients multiplied by the GCF of the variables.

 $Greatest\ Common\ Factor-Examples$

Combining Like Terms II

- **Step 1.** Arrange the terms in descending order of exponents.
- **Step 2.** Combine the terms with like exponents and variables.

Example – Combining Like Terms II $-3y^8 + 6y^9 - 4y^9 + 8y + 7y^8 - 2y$

Step 1.
$$6y^9 - 4y^9 - 3y^8 + 7y^8 + 8y - 2y$$

Step 2.
$$2y^9 + 4y^8 + 6y$$

Combining Like Terms II

- **Step 1.** Arrange the terms in descending order of exponents.
- **Step 2.** Combine the terms with like exponents and variables.

Examples - Combining Like Terms II

Adding Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- Step 2. Add the like terms.

Example - Adding Polynomials

$$-3y^8 + 6y^9 - 4y^9 + 8y + 7y^8 - 2y$$

Step 1.
$$6y^9 - 4y^9 - 3y^8 + 7y^8 + 8y - 2y$$

Step 2.
$$2y^9 + 4y^8 + 6y$$

Adding Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- Step 2. Add the like terms.

Examples - Adding Polynomials

Subtracting Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- **Step 2.** Change the signs of all the bottom terms. (the ones to be subtracted)
- **Step 3.** Combine the like terms.

A short way of saying this is:

Change the bottom signs and add.

Example – Subtracting Polynomials $(-20x^2 + 30x^3 + 3 + 10x) - (30x^2 + 10x^3 + 2 - 20x)$

Subtracting Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- **Step 2.** Change the signs of all the bottom terms. (the ones to be subtracted)
- **Step 3.** Combine the like terms.

A short way of saying this is:

Change the bottom signs and add.

Examples - Subtracting Polynomials

Missing Factors

If
$$(a)(b) = c$$
 then $\frac{c}{a} = b$ and $\frac{c}{b} = a$.

Missing Factor problems can be set up as multiplication problems with one factor blank, or as a division problem. In either case, the answer is always the same.

Missing Factors – Example

Here are the two ways a problem can be written:

$$(3x-2)(?) = -3x^{2} + 2x$$

$$a = (3x-2)$$

$$b = (?)$$

$$c = -3x^{2} + 2x$$

$$c = -3x^{2} + 2x$$

$$c = -3x^{2} + 2x$$

The missing factor is x.

Missing Factors

If
$$(a)(b) = c$$
 then $\frac{c}{a} = b$ and $\frac{c}{b} = a$.

Missing Factor problems can be set up as multiplication problems with one factor blank, or as a division problem. In either case, the answer is always the same.

Missing Factors – Examples

Degree of a Polynomial

♦ The degree of a polynomial is highest degree (exponent) of any of its terms after it has been simplified.

Example - Degree of a Polynomial

$$40x^3 + 10x^2 + 5x + 4$$

- **3** is the largest exponent
- this is a third degree polynomial

Degree of a Polynomial

♦ The degree of a polynomial is highest degree (exponent) of any of its terms after it has been simplified.

Examples - Degree of a Polynomial

Multiplying Polynomials by -1

To multiply a polynomial by -1, change the sign of each term of the polynomial.

$$-1 (3a+4b-2c) = -3a-4b+2c$$

Multiplying Polynomials by -1 – Examples

Multiply a Polynomial by a Variable

Step 1. Multiply each term of the polynomial by the variable.

Step 2. Combine the results.

Example – Multiply Polynomials by Monomials

$$x(2x^2 + 3x - 4)$$

Step 1.
$$x(2x^2) = 2x^3$$

$$\mathbf{x}(3\mathbf{x}) = 3\mathbf{x}^2$$

$$x (-4) = -4x$$

Step 2.
$$2x^3 + 3x^2 - 4x$$

Therefore:
$$x(2x^2 + 3x - 4) = 2x^3 + 3x^2 - 4x$$

Multiply a Polynomial by a Variable

- **Step 1.** Multiply each term of the polynomial by the variable.
- Step 2. Combine the results.

Examples – Multiply Polynomials by Monomials

Multiply a Polynomial by an Integer

Step 1. Multiply each term of the polynomial by the integer.

Step 2. Combine the results.

Example – Multiply a Polynomial by an Integer

$$-2 (2x^2 + 3x - 4)$$

Step 1.
$$-2 (2x^2) = 4x^2$$

$$-2 (3x) = -6x$$

$$-2 (-4) = 8$$

Step 2.
$$4x^2 - 6x + 8$$

Therefore:
$$-2 (2x^2 + 3x - 4) = 4x^2 - 6x + 8$$

Multiply a Polynomial by an Integer

- **Step 1.** Multiply each term of the polynomial by the integer.
- Step 2. Combine the results.

Examples – Multiply a Polynomial by an Integer

Multiply a Polynomial by a Monomial

Step 1. Multiply each term of the polynomial by the monomial.

Step 2. Combine the results.

Example-Multiply Polynomials by Monomials

$$-2x (2x^2 + 3x - 4)$$

Step 1.
$$-2x(2x^2) = -4x^3$$

$$-2x (3x) = -6x^2$$

$$-2x(-4) = 8x$$

Step 2.
$$-4x^3 - 6x^2 + 8x$$

Therefore:
$$-2x(2x^2 + 3x-4) = -4x^3 - 6x^2 + 8x$$

Multiply a Polynomial by a Monomial

- **Step 1.** Multiply each term of the polynomial by the monomial.
- Step 2. Combine the results.

Examples – Multiply Polynomials by Monomials

Multiplying Two Binomials

- ◆ The product of 2 binomials has 4 terms. To find these 4 terms, multiply each term in the 1st binomial with each term in the 2nd binomial. This process is called the FOIL method.
- ♦ The formula is: (a + b) (c + d) = ac + ad + bc + bd
- F = (ac) is the product of the FIRST terms
- O = (ad) is the product of the OUTSIDE terms
- I = (bc) is the product of the INSIDE terms
- L = (bd) is the product of the **LAST** terms

Example – Multiplying Two Binomials (m + 3) (m + 4)

Step 1.	Multiply first terms:	$(m) (m) = m^2$
Step 2.	Multiply outside terms:	(m) (4) = 4m
Step 3.	Multiply inside terms:	(3) (m) = 3m
Step 4.	Multiply last terms	(4) (3) = 12
Step 5.	Combine like terms:	$m^2 + 4m + 3m + 12$ $m^2 + 7m + 12$

Multiplying Two Binomials

- ◆ The product of 2 binomials has 4 terms. To find these 4 terms, multiply each term in the 1st binomial with each term in the 2nd binomial. This process is called the FOIL method.
- \bullet The formula is: (a + b) (c + d) = ac + ad + bc + bd

F = (ac) is the product of the FIRST terms

O = (ad) is the product of the OUTSIDE terms

I = (bc) is the product of the INSIDE terms

L = (bd) is the product of the **LAST** terms

Examples – Multiplying Two Binomials